marta_inj (marta_inj) wrote,
marta_inj
marta_inj

Categories:

Статическое электричество



Электричество на кузове может возникнуть при движении автомобиля и трении о воздух. Если помнит кто уроки физики в школе, то заметит, что это похоже на то, как электризуется при трении об сукно эбонитовая палочка. Впрочем, это может произойти не только во время движения машины, но и когда автомобиль находится на стоянке и длительное время подвергается воздействию ветра.

Кузов автомобиля, движущегося по сухой дороге, может получить заряд до 10000 вольт.

Электроразряд чувствуется при нарезании бумаги, расчесывании волос, при переливании бензина. Свободные заряды сопровождают человека везде. Использование различных электрических устройств увеличивает их появление. Они возникают при пересыпании и измельчении твердых продуктов, перекачивании или переливании горючих жидкостей, при перевозке их в цистернах, при сматывании бумаги, тканей и пленки.

https://квант-спб.рф/napryazhenie/staticheskoe-napryazhenie-eto.html
Интенсивное разделение зарядов происходит в результате таких действий, как:
• прохождение потока жидкости через трубы или мелкоячеистые фильтры,
• осаждение частиц твердого тела или несмешивающейся жидкости через другую жидкость,
• выброс мелких капель или частиц из сопла,
• всплескивание или взбалтывание жидкости при ее соприкосновении с твердой поверхностью,
• сильное трение друг о друга некоторых материалов.

Так, вращающийся шкив с приводным ремнем способен зарядиться до 25000 вольт, человек в шерстяных носках при хождении по сухому ковру способен накопить заряд на теле до 6000 вольт.

Воздействие статики на человеческое тело осуществляется в виде продолжительно протекающего электротока слабого напряжения или же моментного разряда, что вызывает легкие и не всегда приятные покалывания на коже (иногда они оцениваются как умеренные или даже сильные уколы).

Разность потенциалов ниже 3000В человеком обычно не ощущается. Прохождение пешком 6 метров по ПВХ линолеуму при влажности воздуха 15% вызывает образование потенциала 12 кВ, а при 80% влажности не более 1,5 кВ.


Ниже текст НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ "Электростатика"

...трудно в той или иной ситуации предвидеть полярность и величину возникающих зарядов. Во многом электростатика все еще остается "черной магией", а не наукой.

...Развитие современных материалов, особенно полимеров, и их массовое применение в разнообразных областях: для покрытия полов, отделки помещений, изготовления мебели, одежды и продукции технического применения, сделало статическое электричество повсеместным явлением. В ряде отраслей промышленности, связанных, например, с производством электроники или с проведением процессов, в которых обращаются огнеопасные материалы, непреднамеренные и невидимые разряды статического электричества приводят к появлению брака, утрате надежности производимой продукции, возникновению пожаров и взрывов. В повседневной жизни электростатический шок для персонала стал явлением банальным...

...В основном электростатические заряды на материале, изделии или объекте - это результат:

- прикосновения и трения;

- переноса заряда;

- электростатической индукции;

- поляризации;

- проявления фотоэффекта;

- проявления пироэлектрического эффекта;

- проявления пьезоэлектрического эффекта;

- ионизации и адсорбции ионов;

- электрохимических процессов.

Однако, первичным источником электростатического заряда является трибоэлектрическое заряжение. Если две первоначально незаряженные поверхности привести в соприкосновение, произойдет перенос заряда, обычно, это происходит на общей разделяющей их границе. Если газ содержит взвешенные твердые или жидкие частицы, которые становятся заряженными при соприкосновении и последующем отделении, то может показаться, что электростатически газ заряжен. При разделении каждая поверхность уносит заряды одинаковые по величине и противоположные по знаку. Проводящие или рассеивающие объекты могут стать заряженными посредством индукции под воздействием электрического поля других заряженных объектов или проводников с высоким потенциалом. Любой объект может стать заряженным, если на нем аккумулируются заряженные частицы или молекулы...
...Контактная электризация может происходить при взаимодействии двух твердых материалов, двух жидкостей или твердого материала и жидкости. Чистые газы не могут заряжать материалы таким путем. Если газ содержит твердые частицы или капли жидкости во взвешенном состоянии, то они могут заряжаться и такой газ может нести эти заряженные частицы.

Если различающиеся между собой твердые материалы первоначально не заряжены и находятся под потенциалом земли, то при соприкосновении между ними происходит передача заряда от одного материала к другому. Когда они разделяются, свободный положительный заряд - остается на одной поверхности, а свободный отрицательный заряд на другой поверхности. Количественно заряд возрастает с размером площади соприкосновения и воздействующего давления. Дополнительное трение также увеличивает площадь контактного взаимодействия.

Сравнительное количество и полярность зарядов, получаемых материалами, можно представлять списками, выражающими трибоэлектрические ряды. Ожидается, что материал зарядится положительно при взаимодействии с материалом, расположенным в таком ряду ниже его, и отрицательно при взаимодействии с материалом, расположенным выше его. Нужно отметить, что положение материала в трибоэлектрическом ряду не достаточно определенное, зависящее от условий испытания. К тому же, два образца из одного и того же материала при трении друг с другом могут довольно сильно заряжаться.


Два соприкасающихся предмета взаимно заряжаются зарядами противоположных знаков, и между ними образуется электрическое поле. При последующем их разделении преодолевается сила их взаимного притяжения и линейно с увеличением расстояния между ними возрастает разность потенциалов. При этом происходит утечка зарядов через любые остающиеся участки соприкосновения разделяемых материалов. У проводников рекомбинация зарядов фактически полная ни на одном материале после разделения зарядов не остается. Если один или оба материала являются непроводящими, полная рекомбинация зарядов не может иметь места, и отделяющиеся материалы сохраняют часть своего заряда. При этом, не смотря на то, что сохраняется только небольшая часть первоначального количества разделяемых зарядов, т.к. расстояние между ними при соприкосновении поверхностей, было чрезвычайно мало, потенциал после их разделения может достичь многих киловольт. Реальные поверхности обычно грубы и их заряд увеличивается, если площадь контакта возрастает под воздействием давления или трения. Следует заметить, что реальная площадь соприкосновения материалов существенно отличается от площади их номинального контакта. Они могут отличаться на порядок или более.
Контактная электризация жидкостей - такой же сложный процесс, но зависящий еще от присутствия ионов и (в меньшей степени) заряженных микроскопических частиц.
...
Если ионы (или частицы) одной полярности абсорбированы поверхностью, то к ним притянутся ионы противоположной полярности, которые образуют диффузионный заряженный слой в жидкости, примыкающий к поверхности. Если жидкость затем переместится относительно поверхности, то она унесет часть этого диффузионного слоя, тем самым обеспечивая разделение положительных и отрицательных зарядов. Как и в случае твердых частиц, высокое напряжение образуется в результате работы, затраченной на разделение зарядов, если жидкость недостаточно электропроводна, чтобы предотвратить их взаимную нейтрализацию. Такие процессы могут протекать на границах твердая фаза/жидкость и жидкость/жидкость.

4.3 Заряжение индукцией

Электрическое поле существует вокруг любого заряженного объекта. Проводник или рассеивающий материал (незаряженный объект 2), введенный в поле заряженного объекта 1, изменяет начальную конфигурацию его электростатического поля, и в то же самое время под влиянием его воздействия в нем происходит перераспределение зарядов (рисунок 1а). Если незаряженный объект изолирован от земли, то он приобретет электростатический потенциал, зависящий от его положения в поле заряженного тела и обеспечивающий возможность возникновения разряда на землю.

При последующем кратковременном соединении с землей потенциал объекта 2 снижается до нуля и на нем остается неуравновешенный заряд (рисунок 1б). Когда воздействующее электростатическое поле устраняется, свободный заряд остается (рисунок 1в). Если объект 2 изолирован, а воздействующее поле устранено, то с него может произойти разряд. Считают, что проводящий объект зарядился по индукции. Разряд с такого объекта может представлять опасность, например, при движениях человека в поле заряженных материалов.


4.4 Передача заряда проводимостью

Всякий раз, когда заряженный объект вступает в контакт с другим объектом (рисунок 2), их заряды перераспределяются в такой степени, в которой позволяет их проводимость и емкость. Это потенциальный источник электростатического заряжения. Так, например, заряжаются твердые объекты, на которых осаждаются заряженные брызги, туман или пыль. Подобная передача зарядов может также происходить, когда объект находится в ионизированном потоке газа.


4.5 Сохранение заряда

После разделения и заряжения материалов электростатические заряды быстро взаимно нейтрализуются или непосредственно, или через землю, если для этого не возникнет препятствий. Если заряд находится на непроводящем объекте, то он сохраняется из-за электрического сопротивления материала. Чтобы заряд сохранялся на проводнике, проводник должен быть изолирован от других проводников и земли.

Чистые газы, подобные воздуху, в естественных условиях являются непроводящими, и взвешенные частицы или капли в облаках пыли, в тумане или в распыленных системах могут сохранять свои заряды очень долго, независимо от электропроводности самих частиц.

Скорость утечек заряда зависит от электрического сопротивления объектов в системе и емкостей проводников. Этот процесс известен как релаксация. Сопротивление, удельное объемное сопротивление, удельная объемная электропроводность или значения скорости утечки заряда, которая требуется для решения электростатической проблемы, зависят в основном от рассматриваемой системы.

Во многих производственных процессах часто происходит непрерывное генерирование электростатического заряда, который накапливается на изоляторе или изолированном проводнике, например когда поток заряженной жидкости или порошка поступает в изолированную металлическую емкость, или когда человек идет по изолирующему напольному покрытию. В этом случае потенциал на изолированном проводнике - результат баланса между поступающим зарядом и скоростью его утечки...

4.6 Влияние влажности воздуха

Материалы в той или иной степени абсорбируют из воздуха воду, и в случае изоляторов это может значительно увеличивать скорость утечки зарядов. Вода, абсорбированная поверхностью материалов, является основной составляющей поверхностной проводимости, которая отличается от их объемной проводимости. Данный эффект, хорошо наблюдаемый, но все еще плохо понятый, состоит в том, что проводимость увеличивается с количеством абсорбированной воды, то есть практически проводимость возрастает с увеличением относительной влажности. Эффект наблюдается даже при относительно низкой влажности (RH<20%), когда вода может только присутствовать в молекулярной форме, и никакой свободной воды в виде слоя жидкости не существует.

4.7 Электростатические разряды

Искровые разряды



Искровой разряд - электрический разряд между двумя проводниками с определенной разностью потенциалов. Для него характерен четкий ярко светящийся канал с высокой плотностью тока. Газ полностью ионизирован по всей длине канала. Разряд резкий и может сопровождаться четко слышимым щелчком (одиночным резким звуковым импульсом). Типичный пример - разряд между пальцем человека и большим металлическим объектом.

Разность потенциалов между проводниками, при которой происходит разряд, зависит от их формы и расстояния между ними.

Ток, протекающий в искровом канале, ограничен только импедансом внешней цепи, и в разряде протекает почти весь заряд, имеющийся на электродах перед разрядом. Поэтому в большинстве случаев при искровом разряде расходуется практически вся энергия, имеющаяся перед разрядом.

Коронные разряды



Этот тип разрядов связан с проводниками, с остриями или острыми краями. Коронные разряды могут возникать, когда такой проводник заземлен и приближается к наэлектризованному объекту или, альтернативно, если проводник находится под высоким напряжением. Разряды возникают вследствие того, что локальное электрическое поле у острой поверхности очень велико и обеспечивает возникновение перенапряжения (превышает 3 МВ/м). Так как перенапряжение быстро уменьшается по мере удаления от поверхности проводника, область ионизации не распространяется дальше границы перенапряжения. Коронный разряд может быть направлен к заряженному объекту или, в случае высокого потенциального проводника, в окружающее пространство.

Коронные разряды трудно увидеть, но при приглушенном освещении свечение можно заметить с некоторого расстояния. Вне этой ионизированной области ионы могут перемещаться на большие расстояния и их движение зависит от направления поля.

Кистевые разряды



Эти разряды могут возникать, когда заземленные проводники приближаются к заряженному изоляционному материалу (например, между пальцем человека и пластмассовой поверхностью или между металлической загрузочной трубой и поверхностью жидкости в резервуаре).

Это быстро протекающие кратковременные разряды, которые при подходящих условиях можно увидеть и услышать. В отличие от искровых разрядов в них расходуется только незначительная часть заряда, связанного с системой, и разряд не приводит оба объекта к одному и тому же значению потенциала (не приводит к выравниванию потенциалов двух объектов).

Поверхностные кистевые разряды

Различие между кистевым разрядом и поверхностным кистевым разрядом состоит в том, что первый происходит, главным образом, в воздушном разрядном промежутке, а второй - на границе раздела фаз, например на поверхности материала. Причина второго разряда, являющегося поверхностным, состоит в том, что энергетическим источником служит поле, заключенное, главным образом, в тонком слое диэлектрического материала, а не внешнее поле, как в первом случае. Для его возникновения требуется напряжение пробоя тонкого слоя, которое значительно превышает напряжение пробоя соответствующего воздушного промежутка. Возникновения поверхностных кистевых разрядов можно избежать, если гарантировать, что напряжение пробоя диэлектрического слоя меньше, чем 4 кВ. Максимальное допустимое значение напряжения пробоя увеличивается с увеличением толщины диэлектрика и в определенных практических случаях допустимое напряжение пробоя может быть больше, чем 4 кВ. Разряд можно инициировать или проводящим объектом, приближающимся к поверхности, или пробоем диэлектрика. Если поле в диэлектрике, обусловленное зарядом на его поверхности, достигает пробивного значения для материала диэлектрика, возникает спонтанный разряд и сопутствующий пробой (прокол) листа/покрытия. Начиная с этого пробоя (или с разряда на приближающийся объект), высокая параллельная поверхность диэлектрика составляющая электрического поля приводит к возникновению ряда сильных поверхностных разрядов, в которых стекает большая часть поверхностного заряда.

Разряды с тела человека

Заряды на теле человека обычно вызывают опасность. Человек, изолированный от земли, может легко наэлектризоваться и оставаться в заряженном состоянии. Изоляция от земли может обеспечиваться напольным покрытием или подошвами обуви, выполненными из изоляционного материала. Существует много механизмов, обеспечивающих электризацию человека: для этого достаточно походить по полу, подняться с сиденья, снять одежду, воспользоваться пластмассовыми изделиями, слить жидкость или собрать заряженный материал в емкость, или постоять в поле заряженного объекта, например, приводного ремня или изолирующей упаковки.

Если электростатически заряженный человек коснется электропроводящего объекта (например, ручки двери, перил, и т.д.), то произойдет искровой разряд. Такие разряды могут быть незаметными или неслышимыми и даже не ощутимыми человеком.

Потенциал 3 кВ на характерной для тела человека емкости в 200 пФ соответствует запасенной энергии 0,9 мДж. Искровой разряд с человека при таком значении энергии способны зажечь газы (МЭЗ смеси водород/воздух - 0,02 мДж), пары (МЭЗ смеси углеводород/воздух - 0,2 мДж) и даже некоторые пыли (менее 1 мДж). И, конечно, такие разряды способны повредить незащищенные электронные устройства.


АНТИСТАТИКИ, вводят в состав полимерных материалов или наносят на пов-сть изделий для уменьшения их статической электризации... Действие антистатиков основано в большинстве случаев на повышении электрической проводимости материала, обусловливающей утечку зарядов.

Основные группы антистатиков:

Электропроводящие материалы. К ним относятся высокодисперсные металлы и их оксиды, хлориды металлов, графит, сажа и др. Такие антистатики наносят на поверхность изделий из растворов (дисперсий) или вводят в состав материала как наполнители. В первом случае используют, например, Ag, образующий покрытия с наибольшей электрической проводимостью, SnO, реже-LiCl, СаС12, MgCl2 (недостаток хлоридов - высокая коррозионная активность), а также сажу, которая при правильном выборе связующего образует стабильные покрытия с высокой электрической проводимостью.

Содержание электропроводящих наполнителей (напр., высокодисперсных Си, Fe, Al, Ni, графита, сажи) в полимерах достигает нескольких десятков %. Действие антистатиков, обусловленное созданием в материале токопроводящей структуры, например, цепочечной сажевой, зависит не только от типа и кол-ва антистатика, но и от способа его введения в материал, а также от структуры полимера.

Поверхностно-активные вещества. Для антистатической обработки синтетических волокон и тканей применяют 2-5%-ные растворы или эмульсии ПАВ (например, бутилстеарата, триэтаноламина, производных этиленоксида, солей стеариновой к-ты и октадециламина, алкилфосфатов).

В качестве антистатиков для пластмасс используют производные имидазолина, амины и их соли, соли четвертичных аммониевых оснований, продукты высших спиртов, гликолей, органических кислот... Антистатики распыляют (наружные антистатики) или вводят в материал при его переработке (внутренние антистатики; 0,1-5% по массе)
.
Tags: Химия, Электричество
Subscribe

  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic
  • 0 comments